Category

The science behind hyperbaric oxygen therapy

You have probably read about or heard of hyperbaric oxygen therapy. But have you ever wondered just how it worked?

Hyperbaric oxygen therapy involves breathing 100% pure oxygen whilst sitting in our pressurised chamber. The chamber simulates the pressure at approximately 2 atmospheres (2 ATA) under water. There is, of course, no water involved in this process and the whole process is non-invasive and pain-free.

Due to the increase in pressure, the patient will breathe 10 to 20 times more oxygen into their body. Your blood then carries this oxygen throughout your body and delivers it to areas where it is needed, such as wounds or infected areas.

These areas need more oxygen to survive and heal. The increased level of oxygen in the blood arriving at these areas and result in temporally restoring normal levels of blood gasses and tissue function which help to promote healing and fighting off bacteria by stimulating new capillary growth.

When blood flows normally

The air we normally breathe is made up of 21% oxygen and 79% nitrogen. When breathing the lungs transfer the oxygen to the red blood cells – via hemoglobin. The then oxygen-rich red blood cells are carried throughout the body by plasma, which travels through the blood vessels. The oxygen diffuses into the surrounding tissue and it is delivered where it is needed the most.

When blood flow is restricted

When there is a restriction (occlusion) in the blood flow due to injury or illness, the red blood cells block the blood vessel and are not able to transfer oxygen to the cells on the other side of the blockage. This can cause swelling and the area is starved of oxygen causing hypoxia – a lack of oxygen. When this happens the tissue begins to break down.

Hyperbaric oxygenation effects

Breathing 100% oxygen under pressure causes the oxygen to diffuse into the blood plasma. This oxygen-rich plasma is able to travel past the restriction, diffusing up to four times further into the tissue. The increased pressure helps to reduce swelling and discomfort while providing the body with 10 to 20 times the normal supply of oxygen to help repair tissue damaged by the original occlusion or subsequent hypoxic condition.

Regeneration of blood vessels

Hyperbaric oxygen therapy forces more oxygen into the tissue, which helps stimulate the formation of new blood vessels. These new blood vessels develop, and the oxygenated blood cells start to flow to the affected areas. This then creates the optimal environment for the body’s natural healing processes to repair the damage.

The most common treatments that Wesley Hyperbaric treat are radiation damage to the bone and soft tissue and the treatment of non-healing wounds such as diabetic ulcers or venous leg ulcers. The above process is proven to treat these conditions effectively as well as a range of other conditions.

If you are suffering from any of the conditions that are proven to be treatable with hyperbaric oxygen therapy then do get in touch with us. All you need is a referral from your GP or specialist and you can then come in for an assessment to start treatment straight away.

Radiation Cystitis – radiation injury to the bladder

Occasionally radiation treatment of bowel, prostate or uterine cancers can cause latent injury to the bladder wall resulting in bleeding.

Soft tissue radiation injury of the bladder is effectively treated with hyperbaric oxygen.

If you have had radiation treatment in the past and are now unfortunately suffering from cystitis because of it then we might be able to help you.

Radiation side effects are generally divided into two categories – those that happen during or just after the treatment, called acute reactions; and those that happen months or even
years after the treatment, called chronic complications.

These more chronic complications are usually caused by the interruption of nutrients (specifically oxygen) passing through blood vessel walls in the affected area. This is caused by a process of hardening of these vessel walls as a secondary effect of the radiation.

This vessel wall hardening does not allow for the oxygen to pass through to the tissues that require oxygen to repair themselves or, in severe cases, for tissue survival. Hyperbaric oxygen has been shown to re-grow new blood vessels in the affected area (to about 80% of normal), restoring the tissue’s ability to heal.

Radiation cystitis case study

This 85 year old male patient was referred by his urologist to Wesley Hyperbaric suffering the effects of radiation cystitis after  radiotherapy.

He undertook several procedures such as bladder washouts, blood transfusions and a biopsy – which confirmed radiation cystitis.

Two weeks after initial hospital admission and three days post surgery, HBOT was commenced with Wesley Hyperbaric. At that time continuous bladder irrigations continued with large clots and blood draining.

The therapy consisted of 40 daily treatments, each taking just under two hours, Monday to Friday.

Normal bladder
Abnormal bladder wall in Radiation Cystitis

A decrease in blood staining of the urine was noted after 2 weeks.

With no further adverse events, the indwelling urinary catheter was removed on day 26 of treatment and the patient discharged from hospital after 31 hyperbaric sessions.

He continued to complete his 40 sessions on an outpatient basis.

abnormal bladder
Image of normal internal bladder surface

At his six week follow up he reported significant improvement in urinary symptoms. By 6 months this had completely resolved.

He was no longer experiencing pain and reported being very satisfied with the outcome.

If you have had radiation treatment and are now suffering from the complications outlined above then please get in touch. A referral from your GP or specialist is all you need to get the ball rolling.

A brief history of hyperbaric oxygen therapy

A brief history of hyperbaric oxygen therapy

You may not have heard much about hyperbaric oxygen therapy.  You may even think it’s a newly discovered medicine that is untested and unproven. You would certainly be wrong in thinking this as the science and practice behind what we do at Wesley Hyperbaric has been around for centuries.

Looking back as far as the 1600s we can see that the use of chambers to treat conditions by changing air pressure has been practiced. Back then it was a very new science, but a science none the less. As we have had advances in understanding and technology, we have seen how the use of hyperbaric oxygen therapy has become a go-to treatment for certain conditions.

Let’s take a brief journey through the past to understand where hyperbaric oxygen therapy began and how we arrived at where we are today.

1662

The very first steps in hyperbaric oxygen therapy were taken by a British clergyman and physician called Nathaniel Henshaw. He believed that putting a patient under pressurised conditions would leave to therapeutic benefits to certain conditions of the lungs and even to aid better digestion. He created a chamber, which is called his ‘Domicilium’ and the air pressure was driven with organ bellows. At this point in time, this was very simple – there was only a change in pressure within the chamber and no form of pure oxygen was used, in fact at this time air has not been broken down into its constituent gases. With time and further discovery, this initial invention would improve.

1830’s and 40’s

Despite the work of Robert Boyle who gave us Boyle’s Law in the 1600s. There was still much to be understood about decompression and the effects on the human. Robert Boyle had conducted experiments on small animals to understand the behavior of gasses and how the animals reacted to the changes in pressure. But it wasn’t until the 1840’s that we would be affected by decompression illness when workers such as miners, divers and tunnel construction workers were being affected by air pressure in their working conditions.

Diver’s in Portsmouth, England were affected when working to clear the wreck of HMS Royal George which has sunk in 1787 and now was proving to be a hazard to the ever growing English naval fleet. Royal engineer William Pasley decided to test his new equipment – a hard hat diving bell on this project. Men would work underwater in this diving bells and be subject to pressure changes.

Similarly, during the 1830’s bridge construction workers, miners and tunnellers would use a sealed box filled with compressed air, called a caisson, to work underwater or at great depths. This allowed them to work safely with a supply of air. The workers became known as Caisson workers, or just ‘caissons’.

As the amount of work increased and more and more workers were using these Caissons, there was an increase in reports of illnesses such as dizziness, cramping, sharp pains in the joints and abdomen and even death. The understanding for this was not understood and it became known as mysterious malady. One strange mystery to them was that the symptoms seemed to disappear when the worker returned to the pressurised chamber. Of course, we now see these as classic symptoms of decompression illness or as it’s known to divers today ‘the bends’. The term ‘the bends’ was coined later on in the 1700s when similar workers working on the Brooklyn Bridge in New York were suffering from these symptoms, many workers have lost the ability to stand up straight and were left with a permanent bend to their stature.


It was 1878 when Paul Bert proposed that the caisson workers were affected by the pressure changing too quickly which then led to the illness.

Not too long after this understand recompression chambers were built at these construction project sites to help recompress workers suffering from this illness. Effectively creating what we have today in terms of a chamber created to aid suffering patients.

1870’s

By 1877 the use of hyperbaric chambers was being used in medicine. A French surgeon called Fontaine developed a portable operating theatre which was within a pressured chamber. He believed that the increase in oxygen in the patient’s blood would help with anesthesia. This allowed for a higher level of oxygen to ensure lower rates of death under anesthesia.

1900’s

By the start of the twentieth century, the Royal Navy has started to take interest in hyperbaric medicine to create a solution for its divers suffering from the bends.

In 1907 Dr. John Scott Haldane was working on experiments using goats and differing depths and helped develop the first dive table for use by divers. These tables are still used today by Wesley Hyperbaric to help safely treat patients.

 1920’s

During the early 1900s Dr. Orval Cunningham has been working with a patient suffering from cardiovascular disease and made a link between patients who lived at higher altitudes suffering more than patients living at sea level. He believed that putting patients under even greater air pressure differences would have great benefits. He created a chamber a 27-metre chamber and started to successfully treat many conditions.

But in 1921 he took a massive step and constructed the world’s largest chamber – a chamber fit for a king! It was built in Kansas City and was 20 metres in diameter and within it there were five floors, a smoking lounge, dining room, private quarters and the décor of a fine hotel.

With claims as big as the chamber itself he was soon under the spotlight of the authorities. With his unproven claims the authorities shut down the ‘hyperbaric hospital’ and it was demolished and sold off for scrap metal for use in the war effort.

1930’s

The US military began conducting research about survivable pressures.  Using hyperbaric oxygen to treat navy clearance divers with decompression sickness. The US Navy’s research has itself help develop its own dive tables. As the Royal Navy tables, these are used today for treating certain conditions in hyperbaric chambers.

1960’s

By the 1960s hyperbaric chambers were being used in mainstream medicine. At Boston Children’s Hospital a chamber acquired from Harvard University was being used by Dr William F Bernhard to treat children suffering from cardiac conditions – this included the prematurely arrived son of John F Kennedy. The hospital undertook surgery on 120 infants using the chamber prior to the invention of the bypass machine.

As the research continued and further advancements were made a governing body was formed to help keep this going ­– in 1967 The Undersea and Hyperbaric Medical Society (UHMS) was founded. To this day they continue to add governance to hyperbaric medicine allowing the safe use of the medicine across the world.

UHMS helped develop a list of clinical indicators that have evidence that hyperbaric oxygen therapy can be used. As this is a wholly researched and proven list Medicare in Australia adopted this list to help patients get access to help from registered and accredited practitioners such as Wesley Hyperbaric.

1980’s

As the years have gone by, the medical research has not stopped and there is an ever increasing list of conditions that hyperbaric oxygen therapy has been proven to benefit. The 1980’s saw research proving that the therapy has a massive impact on problem wounds and radiation tissue damage. These are some of the conditions that we see the most at Wesley Hyperbaric and we see a lot of success in the treatments.

So that brings us up to date on the medicine. As you have read, from the early days we have seen a lot of problems solved from industry being able to build, advances through military research and of course in the medical industry an ability to treat conditions that would have been life-threatening allowing organisations such as the Wesley Hyperbaric to give people a chance of getting over conditions and regaining their life.

But it doesn’t stop there. The most basic and early understood science such as gas laws still today form the basis for hyperbaric oxygen therapy, but as research continues and technology changes the future the medicine will continue to change and grow. Wesley Hyperbaric is playing a major part in this, conducting its own studies into conditions such as Xerostomia and pelvic irradiation damage, and prove how hyperbaric oxygen therapy can help.

It’s business as usual at Wesley Hyperbaric

At Wesley Hyperbaric no two days are the same. We are constantly welcoming new patients to the unit for treatment in the hyperbaric chamber as well as saying goodbye to patients who have successfully treated their course. But from all the conditions that we treat, what are the most common we see?

We only treat 14 conditions that have research-based evidence that proves that the treatment is beneficial. These conditions are approved by The Undersea and Hyperbaric Medical Society (UHMS) meaning that there is accreditation and proof behind our confidence that we have a solution for our patients.

Our top three conditions

Of the 14 conditions there are some we don’t see very often at all. We do, however, constantly treat certain conditions, and with every dive we undertake we see a constant flow of what we can call our top three treatments:

You can rest assured that we will not promise success for curing conditions that have not been proven to be treatable – you may have been told by other hyperbaric operators that they can offer you that miracle cure, this is unrealistic and you should avoid any businesses that offer you this.

If you or anyone you know is suffering from any of the conditions we treat then we would love to hear from you. All you need to start the process is a referral from your doctor, we can then look at getting your treatment underway. If you have any questions please call one of our friendly team members on 07 3371 6033.

When it comes to hyperbaric oxygen therapy there really is only one choice.

Having a serious medical condition is something that requires your full attention. You should ensure whatever you do, it will deliver the results you are looking for. Medical procedures should be safe, proven to work and be supervised by qualified health care professionals.

Hyperbaric oxygen therapy is one area of medicine that has many options given to you, and sometimes the providers are not always equal. There are many small operators offering mild hyperbaric treatment using portable, inflatable chambers – sometimes they might even offer you the convenience of coming to your home. These are really not true hyperbaric chambers and the benefits of using them are very questionable.

Mild hyperbaric chambers are not able to replicate the same depth as a medical grade chamber. The lack of pressure and the level and quality of the oxygen given will limit the ability to encourage healing and growth of bone and soft tissue. There is also a major concern around safety – most of the mild hyperbaric chambers are operated by non-hyperbaric qualified operators – and the important safety checks and procedures may not be in place due to the small size and inexperience of the operators. But most of all there really is no evidence that these chambers do anything for your condition and you could be wasting your money by choosing them.

For over 20 years Wesley Hyperbaric has been successfully treating patients for a range of conditions. We offer a full medical grade service and product that is accredited and approved by most major health funds – and for certain conditions, Medicare. The fact that conditions are covered by health care funds is an indication that there is sufficient scientific evidence that the treatment works. Our service offers a non-invasive and safe process. All completed under the supervision of our expert and fully qualified technicians, nurses and doctors. And we are located within the Wesley Hospital medical precinct.

The Wesley Hyperbaric offers a completely different, and superior service than those of the small mild hyperbaric chambers. The following table gives a side by side comparison to really highlight to you that when making your decision to choose hyperbaric therapy for your condition there really is only one choice you should make:

Wesley Hyperbaric Mild hyperbaric chamber
Usually Pressurised to 14 metres Only capable of depths of 2.5 metres
100 per cent oxygen Air (21 per cent oxygen 79 per cent nitrogen)
Encourages growth of bone and tissue Does not grow bone and tissue
Accredited through research No research or accreditation
Covered by major health funds and Medicare No cover for treatment
Medical grade treatment Treatment is not proven to work
Highly regulated industry No qualification or license needed
Safety technicians and monitoring of conditions to ensure safety at all times No provision of safety checks or monitoring of situations within the chamber
Arterial oxygen at 2.4 ATA 100% oxygen is 1,824 mmHg (normal air pressure is 157mmHg). This refers to how much oxygen is getting into the body, what is making the changes. Arterial oxygen at 1.3 ATA 24% oxygen is 230 mmHg (normal air pressure is 157mmHg).
Safe in the knowledge that the staff are fully qualified hyperbaric medical professionals Often a single operator, small business owner handling all the procedures and processes.

Why not take the time to read about the full range of conditions we treat at Wesley Hyperbaric. We have some case studies on our website too so you can hear about some successes we have had with our patients.

If you think you might need some more information, then please contact us and we can help you with your decision and get you on the right tracks to making a recovery.

 

 

Be a new you in 2019

With 2019 just beginning perhaps it’s time to start thinking about you and your health.

You can begin the year by actively looking to take on any ongoing health problems that have been a burden to you during the past year. This could be complications from a condition such as diabetic wounds, or perhaps you are recovering from cancer and have received radiation treatment that has come with some complications such as soft tissue damage.

Hyperbaric oxygen therapy can offer treatment for a range of conditions and has proven results in enabling people regain a quality of life they are looking for. People often try more mainstream approaches and sometimes they are successful and other times they may not be. Hyperbaric oxygen therapy is often seen as an alternative or even a last resort. However, this should not be the case as Wesley Hyperbaric is a long-established facility located in the Wesley Hospital precinct – operated by fully qualified medical professionals. The process is safe, friendly, proven and non-invasive – as such, it doesn’t need to be your last resort.

How does it work?
The process involves the patient sitting within a pressurised environment breathing 100 per cent oxygen. The patient experiences the same changes a diver would when diving to a depth of 14 metres. The highly oxygenated blood stimulates the growth of new blood vessels in a hypoxic wound, allowing quicker healing. Bacteria are also affected by the high levels of oxygen which also helps the healing process.

Take some time to read more about the conditions we treat and if you think you could benefit from hyperbaric oxygen therapy then seriously consider talking to your doctor or specialist on your next visit. If you need more information then please give us a call or email us.

We hope you have a healthy and happy 2019 and we look forward to continuing to offer a better quality of life to our patients.

Is Hyperbaric Treatment right for you?

Dr Graeme Kay explains the medical evidence behind what we can treat.
Dr Graeme Kay
Dr Graeme Kay
Doctor Graeme Kay is the director of a hyperbaric medicine facility. He has extensive post graduate medical experience and specialist credentials in primary care as well as diving and hyperbaric medicine. This makes him one of the most qualified and respected doctors for Hyperbaric Medicine in the region.

On a daily basis I am asked by patients who feel let down by the traditional medical establishment to treat their conditions. I almost never treat these people. I say almost because there is a role for research into treating conditions with novel therapies, but only under the guise of a formally structured research program with ethical consideration and approval.

The current flavours of condition outside my realm of accepted practice include autism, cerebral palsy, acquired brain injury, chronic fatigue syndrome and Lyme disease.

I imagine that people with these conditions seek my facility because they have exhausted what they feel traditional medicine can give them.

Unfortunately there is no shortage of unscrupulous traders out there, purveying their modern miracle magical cure.

It is possible to some degree to trace back in the literature when the current deviation from accepted practice occurred.

In 2001 a randomised sham-controlled study of 111 children with Cerebral palsy (CP) who received either 40 HBOT treatments at 1.75 ATA, or 40 air sessions at 1.3 ATA (Sham) was published.1 Both groups were found to improve in their outcome measures but with no difference between the groups. This was ascribed to a participation effect by the authors, a finding that was supported by an independent scientific advisory committee.2

There was a group within the hyperbaric medicine community, which is not supported by the community at large, that interpreted this result as an active effect of pressure, even as low as 1.3ATA which is the equivalent of 3m Salt water of pressure or 30kPa. A second sham controlled study was published in 2012 with 49 children with CP enrolled and randomised to receive 40 HBOT treatments at 1.5 ATA or 40 exposures of 1.5ATA breathing a 14% fraction of oxygen (resulting in an equivalent inspired fraction of 21%, thus eliminating the possibility of in increased inspired PO2 being attributable to any effect). Again this study found significant improvement in carer reported disability inventory but with no difference between either group.3

Similar studies for the use of HBOT for mild traumatic brain injury have been conducted. In all these studies there were reported improvements beyond that expected, but no discernible difference between treatment groups. Again a small proportion of the hyperbaric medicine community have attributed this result to a physiological effect from exposure to increased pressure, whilst the majority of the community considers the results to be that of a participation effect. 4,5

As such, the majority of hyperbaric physicians across the globe are of the opinion that delivering ‘mild hyperbaric’ treatments of 1.3ATA breathing air, concentrated oxygen or pure oxygen, has no actual physiological effect. It could be argued that at best, it is a misguided poor interpretation of the data currently available, at worst a wilful and duplicitous disregard for scientific method, being used as rationale for requesting payment for a treatment that is proven to have no benefit.

As credible hyperbaric medicine practice currently exists in Australia, a hyperbaric medicine facility must be a comprehensive hospital based hyperbaric unit with ability to treat all presentations up to and including ICU level of care, and rostered staff including a doctor with extensive training in diving and hyperbaric medicine and nursing staff also suitably trained available 24/7 in order to collect Medicare rebate and in turn access private health funds.6

As such, asking the following questions prior to undergoing hyperbaric treatments may help to sort the woo from fact:

  • Is the condition being treated one of the 14 conditions the UHMS recognises as benefiting from hyperbaric treatments?7
  • If not, does a logical and mechanism exist that has been supported by research in human, animal or in vitro models?
  • What sort of treatment is being provided? If it is less than 2ATA of pressure, and if less than 100% oxygen is being supplied, then there is no evidence that treatment has any efficacy.
  • Is the treatment being provided by a trained doctor and nursing staff? If not, the facility does not comply to the Australian standard 4774.2 and is not eligible for Medicare subsidy.
  • Am I being asked to pay out of pocket for treatment? The majority of Medicare compliant facilities exists as part of public hospitals and require no out of pocket payments. The private facilities that are Medicare Benefits Schedule and AS 4774.2 compliant access Medicare and private health funds for payment for most but not all 14 UHMS recommendations. As such there is usually no out of pocket expense other than any hospital admission co-pay that the patient has negotiated with their fund on joining plus an assessment fee.

By reviewing the above queries, you should be able to satisfy yourself that the services being provided are being applied in an evidence based manner, by trained healthcare staff operating ethically as bound by AHPRA, in a facility that is compliant to the appropriate industry standards to ensure treatments are provided as safely as possible.

References

  1. Collett J-P, Vanasse M, Marois P, Amar M, Goldberg J, Lambert J, et al. Hyperbaric oxygen for children with cerebral pals: a randomised multicentre trial. Lancet 2001;357:582-6
  2. Scientific Advisory Committee. Report Hyperbaric oxygen therapy for children with cerebral palsy: a multicentre randomised clinical trial. Quebec, Canada: Fonds dela recherche en santa du Quebec; 2000
  3. Lacey DJ, Stolfi A, pilat LE. Effects of hyperbaric oxygen on motor function in children with cerebral palsy. Ann Neurol. 2012;72:695-703
  4. Harch PG, Andrews SR, Fogarty EF, Amen D, Pessullo JC, Lucarini J, et al. A phase 1 study of low pressure hyperbaric oxygen therapy for blast induced post concussion syndrome and post traumatic stress disorder. J Neurotrauma. 2012;29:168-85
  5. Weaver LK, Cifu D, Hart B, Wolf G, Miller RS. Hyperbaric oxygen for post concussion syndrome: design of department of Defense clinical trials. Undersea hyperb Med 2012;39:807-14.
  6. http://www9.health.gov.au/mbs/fullDisplay.cfm?type=note&q=T1.1&qt=noteID&criteria=T1.1
  7. https://www.uhms.org/resources/hbo-indications.html

Join our fight against dry mouth

Surviving from cancer is a massive achievement for many. Today’s technology in radiotherapy makes treatment more effective and potentially less damaging due to the ability to focus on the area that needs to receive radiation. There is, of course, some instances where collateral damage occurs to tissue which can lead to complications occurring some time after treatment has completed.

For head and neck cancer sufferers who have undergone treatment using radiation there is a possibility of saliva gland damage, which causes a condition known as xerostomia or dry mouth. This can negatively affect the patient’s quality of life, especially after surviving cancer. Xerostomia leaves people with a dry mouth and the inability to produce enough saliva which can cause difficulty with talking, eating and loss of taste resulting in poor nutrition, increased risk of dental decay and the inability to sleep well at night. And unfortunately, xerostomia can develop into an irreversible and life-long problem.

Wesley Hyperbaric wants to help alleviate these symptoms and is conducting a trial to help establish hyperbaric oxygen therapy as a viable treatment in patients suffering from xerostomia. Hyperbaric oxygen therapy has been successfully proven to help with soft tissue damage caused by radiation to other areas of the body, bringing hope that it can also be effective for salivary gland damage. Our trial will continue into 2019 to gain more information and produce evidence supporting the effectiveness of the treatment for the condition in the future.

Signs of xerostomia
  • Problems with eating, swallowing and talking continuously
  • Difficulty eating certain dry foods such as cereal
  • Denture issues such as fitting, sores or palate issues
  • Loss of taste
  • An increase in the need to drink water – especially at night
  • Dental and mouth issues such as inflammation, increased caries and ulcers.

Dr Ohnmar Aung, at Wesley Hyperbaric, is the principal investigator for this trial and is looking forward to helping more people suffering from Xerostomia. If you are interested in taking part in this trial, you will be able to help us gather scientific evidence and receive the treatment for free. All that is needed is that you have had radiation to the head and neck area and are now suffering from xerostomia and the ability to commit to taking part in a six-week program. You could be on the road to recovery as well as helping other people, in the future, who are suffering from the same conditions.

Please get in touch with us for more information on our services and to find out what the next steps are to take part in the trial.

Living life after radiotherapy

If you or a loved one are one of the 1.2 million people every year who are diagnosed with an invasive cancer then the chances are this has come with a treatment with radiation. Whilst treatment has significantly improved over the years the resulting side effects can sometimes take its toll on the patient’s quality-of-life.

The radiation can sometimes cause complications with nutrients – including oxygen – from passing through the blood vessel walls. This lack of essential nutrients unfortunately hinder the healing of damaged tissues.

Here are some key facts about soft tissue radiation damage and hyperbaric oxygen therapy:

  • Occurs in less than 5% of people who undergo radiotherapy
  • Most commonly involves damage to the bladder or bowel
  • Most commonly noticed as blood in the urine and/or bowel movements
  • Randomized controlled trials have shown hyperbaric oxygen therapy can improve over 70% of people treated
  • Soft tissue radiation injury is the most common condition treated at Wesley Hyperbaric

The good news is that Wesley Hyperbaric has over two decades of experience treating people who suffer from soft tissue radiation injuries. Hyperbaric oxygen therapy is also proven to work most of the time.

So if you, or a loved one, are unfortunate to suffer from any of the conditions outlined above then we can definitely look at helping you get your life back on track. Get in contact today and find out what the next steps might be. Alternatively, speak to your GP or specialist about getting a referral.